Attractors for Modulation Equations on Unbounded Domains { Existence and Comparison {

نویسندگان

  • Alexander Mielke
  • Guido Schneider
چکیده

We are interested in the long{time behavior of nonlinear parabolic PDEs deened on unbounded cylindrical domains. For dissipative systems deened on bounded domains, the long{time behavior can often be described by the dynamics in their nite{dimensional attractors. For systems deened on the innnite line, very little is known at present, since the lack of compactness prevents application of the standard existence theory for attractors. We develop here an abstract theorem based on the interaction of a uniform and a localizing (weighted) norm which allows us to deene global attractors for some dissipative problems on unbounded domains such as the Swift{Hohenberg and the Ginzburg{Landau equation. The second aim of this paper is the comparison of attractors. The so{called Ginzburg{Landau formalism allows us to approximate solutions of weakly unstable systems which exhibit modulated periodic patterns. Here we show that the attractor of the Swift{Hohenberg equation is upper semicontinuous in a particular limit to the attractor of the associated Ginzburg{Landau equation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Periodic Random Attractors for Stochastic Navier-stokes Equations on Unbounded Domains

This article concerns the asymptotic behavior of solutions to the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. First we introduce a continuous cocycle for the equations and then prove the existence and uniqueness of tempered random attractors. We also characterize the structures of the random attractors by comp...

متن کامل

Pullback Attractors for Reaction-diffusion Equations in Some Unbounded Domains with an H-valued Non-autonomous Forcing Term and without Uniqueness of Solutions

The existence of a pullback attractor for a reaction-diffusion equations in an unbounded domain containing a non-autonomous forcing term taking values in the space H, and with a continuous nonlinearity which does not ensure uniqueness of solutions, is proved in this paper. The theory of set-valued non-autonomous dynamical systems is applied to the problem. Dedicated to Peter E. Kloeden on his 6...

متن کامل

Solving high-order partial differential equations in unbounded domains by means of double exponential second kind Chebyshev approximation

In this paper, a collocation method for solving high-order linear partial differential equations (PDEs) with variable coefficients under more general form of conditions is presented. This method is based on the approximation of the truncated double exponential second kind Chebyshev (ESC) series. The definition of the partial derivative is presented and derived as new operational matrices of der...

متن کامل

The Uniform Attractors for the Nonhomogeneous 2D Navier-Stokes Equations in Some Unbounded Domain

We consider the attractors for the two-dimensional nonautonomous Navier-Stokes equations in some unbounded domain Ω with nonhomogeneous boundary conditions. We apply the so-called uniformly ω-limit compact approach to nonhomogeneous Navier-Stokes equation as well as a method to verify it. Assuming f ∈ Lloc 0, T ;L2 Ω , which is translation compact and φ ∈ C1 b R ;H2 R1 × {±L} asymptotically alm...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995